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Abstract. Zero temperature dynamics of two dimensional triangulations of a torus with curvature energy
is described. Numerical simulations strongly suggest that the model get frozen in metastable states, made
of topological defects on flat surfaces, that group into clusters of same topological charge. It is conjectured
that freezing is related to high temperature structure of baby universes.

PACS. 61.20. Lc Time-dependent properties of liquid structure; relaxation – 05.70. Ln Nonequilibrium
and irreversible thermodynamics – 04.60. Nc Lattice and discrete methods in quantum gravity

1 Introduction

Two dimensional dynamical triangulations models have
been largely studied in the context of euclidean quantum
gravity over the past decades (for reviews, see [1]). These
models allow lattice regularization where the cut-off is the
length of the links. In view of 2d quantum gravity formu-
lation, interesting features are essentially thermodynam-
ical limits and critical static properties, as they are key
features for continuum limit of lattice formulation. Great
analytical progresses have been made but numerical sim-
ulations are particulary suited to these models and allow
further investigations in remaining open problems. Square
curvature terms in the action/Hamiltonian is such a prob-
lem that still lacks an analytical solution.

However, as random surfaces models, dynamical tri-
angulations can be used in several other domains like
real membranes, foams, 2d-liquid, defects on surfaces,
etc. [2,3]. Dynamical triangulations models have the nice
feature to be very simple to formulate – purely topologi-
cal models – and to display very interesting physical be-
haviours.

Recently, Sherrington et al. have studied the dynam-
ics of such a model with curvature energy. They discov-
ered behaviours characteristic of strong glass formers [4].
They underlined the role of topological constraints in this
model without quench disorder, and explained glassy be-
haviour as dynamics of topological defects at low temper-
ature. Their aim was to study a simple model of super-
cooled liquid, but their results are not limited to it. In
particular, dynamical properties are essential in numeri-
cal simulations, even if static properties are studied – as
in 2D quantum gravity – as Monte-Carlo techniques con-
sist in performing random walks in configuration space. In
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such a context, a glassy behaviour with exponentially long
equilibration times can mask true equilibrium properties.

In this paper, the work described above is extended to
zero temperature dynamics of a square curvature energy
model. In fact, zero temperature limit, where no thermally
activated process is allowed, is crucial to understand, as
it gives more informations on the energy landscape and,
thereby, on the whole low temperature dynamics.

2 The model – static properties

2.1 Definition

The set of all regular two dimensional triangulations [5]
with N vertices, toroidal topology and no boundaries is
considered. Regular means triangulations without tad-
poles – vertex connected to itself – and self-energy di-
agrams – two vertices connected by two links. Moreover,
each vertex is connected to at least three neighbours. This
set is noted T torus

N . Topological constraints imply that the
number of vertices N , the number of links Nl and the
number of triangles Nt are not independent. The first con-
straint sets the Euler characteristic χ to zero for a torus.
χ is a topological invariant depending on the number of
classes of nontrivial loops on the surface – two for a torus.
For a triangulation, it reads [6]:

χ = N − Nl + Nt

so that, for a torus,

N − Nl + Nt = 0. (1)

The second constraint is local: each triangle is made of
three links and, if there are no boundaries, each link be-
longs to two triangles. So,

2Nl = 3Nt. (2)
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Fig. 1. A triangulation.

Combining relations (1) and (2) gives

Nl = 3N, Nt = 2N.

In the model described here, each triangulation T ∈
T torus

N is endowed with one – and only one – geometry.
This is achieved by setting the length of all links to unity
and imposing on metric to be flat inside each triangle of
T . Such geometries are called piecewise linear manifolds.
It should be noticed that triangulations are not embedded
in any larger space, so that geometries are internal.

A random surfaces model is built from this ensem-
ble of surfaces with fixed topology but different geome-
tries. The method consists to assign to each triangula-
tion/geometry an energy E(T ) which governs dynamics
and equilibrium. At equilibrium, each triangulation T is
weighted by a Boltzmann exponential exp (−βE(T )) with
β the inverse temperature. In the model, E(T ) depends on
Gaussian – internal – curvature. As geometry inside each
triangle is flat, curvature is concentrated at vertices. Fol-
lowing Regge calculus [7], an elementary surface dsi = qi

is defined at each vertex (i) connected to qi neighbours
(see Fig. 1). Such a vertex is called a qi-vertex.

Local curvature at vertex (i) is qiRi, with

Ri =
(6 − qi)

qi

Ri measures local deviation from flatness (qi = 6 and
Ri = 0). However, E(T ) cannot be the total curvature∑

i qiRi because it is a topological invariant, as stated by
the Gauss-Bonnet theorem, and would be a constant in
the model. The choice for the energy is

E(T ) =
∑

i

(qi − 6)2. (3)

It is not strictly speaking equal to the total square curva-
ture

∑

i

qiR
2
i =

∑

i

(qi − 6)2

qi
(4)

but (3) and (4) are expected to give similar results, at
least for small curvature, because

∑

i

(qi − 6)2

qi
=

1
6

∑

i

(qi − 6)2 − 1
36

∑

i

(qi − 6)3 + . . .
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Fig. 2. Equilibrium distribution P (n) at β = 0.

In both cases, surfaces are flattened by curvature energy
at low temperature. However, expression (3) is more sym-
metric with respect to qi = 6. Moreover, for surfaces con-
taining only 5-, 6- and 7-vertices, the energy can be rewrit-
ten

E(T ) = n5 + n7

where nk is the number of k-vertices. As will be seen later,
these surfaces play a crucial role at low temperature.

Finally, the partition function of the model reads

ZN (β) =
∑

T ∈T torus
N

1
C(T )

e−βE(T )

where C(T ) is a symmetry factor needed to avoid over-
counting symmetric triangulations. For large N , C(T ) = 1
for almost all triangulations.

2.2 Equilibrium properties

At infinite temperature (β = 0), the model has been
solved [8,9]. Typical surfaces are characterized by hier-
archical structures of baby universes – bubbles growing
on surfaces and linked by very small necks. The distribu-
tion of their size is known [10]. As a consequence, typical
surfaces are fractal with Haussdorf dimension dH = 4 [11].
The distribution of vertices with n neighbours P (n) has
been calculated [12] (see Fig. 2) and the variance is µ2 =
10.5, meaning a wide range of vertices on the surfaces.
Note that the model follows a modified Aboav’s law [13].

At finite temperature, the model has not yet been
solved and static properties have been studied numeri-
cally by many authors [14,15]. However, a very similar
model has been solved analytically, using matrix model
techniques [16].

When temperature is lowered, curvature energy
favours flattening of surfaces. The ground state of the
model is the hexagonal lattice with qi = 6 at each vertex
(Fig. 3). It should be emphasized that the ground state
does not depend on the precise form of the energy. In fact,
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Fig. 3. The hexagonal lattice.

E(T ) can be rewritten

E(T ) =
∑

i

(
qi

2 + 36 − 12qi

)

=
∑

i

(
qi

2
)

+ 36N − 24Nl

=
∑

i

(
qi

2
)
− 36N

so that, at given N , E(T ) is equivalent to
∑

i(qi − qo)2,
whatever the value of qo. On the other hand, the mean
neighbours number

〈qi〉 =
1
N

∑

i

qi

=
1
N

2 Nl

= 6

is completely determined by topological constraints (1)
and (2). So, the ground state is the configuration that
minimizes

∑
i q2

i with 〈qi〉 = 6.
Here are summarized results obtained by numerical

simulations, done as preliminary work in this paper, for
sizes up to N = 65025. Starting from hexagonal lat-
tices, the system is initially equilibrated with typically
1000 sweeps, and simulations are carried with about 3000
sweeps. For details about the rules of simulations, see
paragraph “dynamics” below. As can be seen in Figure 4,
the distribution P (n) is more and more peaked at n = 6
as temperature is lowered, meaning that surfaces contain
essentially 6-vertices. Then, 5- and 7-vertices can be seen
as topological defects in flat surfaces, whose proportion
vanishes as temperature is lowered. It should be noticed
that, when only 5- , 6- and 7-vertices survive, n5 = n7.
It is a consequence of topological constraints (1) and (2),
because

N = n5 + n6 + n7

2 Nl = 5 n5 + 6 n6 + 7 n7

so that

5 n5 + 6 n6 + 7 n7 = 6 (n5 + n6 + n7)

hence

n5 − n7 = 0.

3 4 5 6 7 8 9 10 11 12 13 14 15
n

0.0

0.2

0.4

0.6

0.8

1.0

P(n)

β=0.
β=0.5
β=1.
β=2.
β=3.
β=4.
β=5.
β=10.
β=20.

Fig. 4. Equilibrium distribution P (n) at various β, for N =
65025.

Fig. 5. T1 move.

Baby universes also disappear at low temperature, as, oth-
erwise, they would increase curvature energy. However, as
can be seen in simulations, there is no sign of phase transi-
tion between high and low temperature phases. This is also
suggested by dimensional analysis, as square curvature is
not relevant in the infrared limit. Moreover, the same con-
clusion arises in the matrix model mentioned above.

3 Dynamics

Although static properties are rather simple, dynamics of
the model reveals a very rich structure.

3.1 Finite temperature

3.1.1 The rules

The rules of dynamical evolution are based on the en-
ergy (3) and use so-called Alexander moves [17], more
precisely T1 moves, which consist in flipping a link in a
triangulation (Fig. 5). Topology and number of vertices
N are conserved during evolution. It has been shown that
T1 moves allow ergodic explorations of the space of trian-
gulations [12].

One elementary Monte-Carlo step of evolution is done
as follows:
- Random choice of a link in triangulation T ;
- Flipping of the link with probability (Glauber type)

w(T → T ′
) =

1
1 + eβ∆E
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Fig. 6. Evolution of energy after a quench to zero temperature, for N = 2500, 6400 and 10000. Each curve corresponds to one
run.

where ∆E = E(T ′
) − E(T ). The proposed triangulation

T ′
is rejected if it contains vertices with qi < 3, self-energy

diagrams or tadpoles. At zero temperature (β = +∞), the
transition probability becomes

w(T → T
′
) = 0 if ∆E > 0

=
1
2

if ∆E = 0

= 1 if ∆E < 0.

In the following, times are expressed in unit of sweeps, i.e.
Nl successive elementary Monte-Carlo steps.

3.1.2 Quench to low temperature

Sherrington et al. [4] have studied the behaviour of the sys-
tem after a quench from initial infinite temperature (disor-
dered) state to low – but finite – temperature. Their main
result is the emergence of glassy behaviour. It may look
rather surprising as the model presents neither frustration
nor quenched disorder. There are two regimes in the evo-
lution, depending on the temperature of the quench. For
high temperatures, equilibrium is reached after a rapid re-
laxation, with equilibration times independent of the tem-
perature.

On the other hand, for low temperatures, the system
evolves in two steps. First, a rapid relaxation that corre-
sponds to annihilation of all topological defects except 5-
and 7-vertices, with fast decay of energy. Then, the sys-
tem becomes glassy with equilibration times exponentially

growing with inverse temperature (Arrhenius behaviour).
In this second period, the energy reaches a plateau, while
two times correlation functions of the curvature (local
energy) develop shoulders and loose invariance in time
translation. Glassy behaviour is the result of creations,
annihilations and diffusions of 5- and 7-vertices. Simpli-
fied reaction-diffusion models give similar results [18]. The
authors conclude that the model displays properties char-
acterizing strong glass forming systems [19].

4 Zero temperature and freezing

The particular case of deep quench to zero temperature
with infinite cooling rate [20] is now described. This is the
original contribution of this paper.

4.1 Energy

The evolution of the energy E(t) after a quench from in-
finite temperature state to zero temperature is plotted in
Figure 6 for several sizes of the system. Immediately after
the quench, there is a very fast decay of the energy, fol-
lowed by a slowing down period where E(t) reaches a series
of plateaux. At the beginning, this looks like stairs. But as
time goes, the plateaux become broader and broader and
eventually “infinite”. It strongly depends on the size of
the system. However, simple contemplation of the graph
of E(t) is not enough to know whether energy really stops
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or not. E(t) could as well decrease to lower plateaux,
and eventually to zero, after very long times unreachable
by reasonable computer simulations. However, as will be
shown in the following, it is very likely that, after a deep
quench, the system gets trapped in metastable states.

The final value reached by the energy follows a sharp
distribution centered on a mean value Ef , according to
initial disordered states. For each data point in Fig-
ure 7, 16 independent runs are performed with 1000 heat-
ing sweeps at infinite temperature followed by sufficient
sweeps at zero temperature (up to 5 × 105 sweeps for
N = 12500) – depending on the time needed by energy to
get frozen. The first important point is that Ef is strictly
greater than zero: the system is trapped in metastable
states and never goes to its ground state. In other words,
the energy freezes, in a time that depends on the size of
the system. This can be seen by looking at the evolution
of P (n), which shows a very fast invasion of surfaces by
6-vertices. Both descriptions – in terms of energy and in
terms of defects – are equivalent as energy and number
of defects ndefects are simply related, if defects are 5- and
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Fig. 8. T1 moves allowed at zero
temperature. When there are no
dipoles (5-7), only the two first
moves (in the box) can occur.

7-vertices only:

E = ndefects.

The second important point is that Ef/N is constant for
large N , as can be seen in Figure 7. A power law fit gives
a limiting value limN→∞ Ef/N = 0.1342(4). So, mean
frozen energy per site is a thermodynamical characteristic
of the model. Alternatively, a finite fraction – ∼13% – of
defects remains in frozen states.

4.2 T1 moves

At zero temperature, besides 6-vertices, only 5- and
7-vertices survive. Evolution of the system can be seen
as dynamics of such defects through the six possible
T1 moves shown in Figure 8. Moves d), e) and f) have
negative energy balance (∆E < 0) and correspond to
annihilation of defects. The others – a), b) and c) –
can be viewed as diffusion of defects on the surface. In
this second category, moves a) and b) – called flippers
in the following – perform local rotations of 5-5 or 7-7
pairs. On the other hand, move c) is a true diffusion
of a dipole – i.e. a pair of 5-7. In order to understand
the evolution of the system after a deep quench, it is
important to know the possible ways of instantaneous
evolution of the system at a given time. This depends
on the repartition of T1 moves and gives a partial view
on the energy landscape [21]. More precisely, at a given
time t, it is possible to group the links of the surface
into three categories: the first one (I) contains links that
cannot be moved because energy would be increased;
the second one (II) contains links whose moves make
energy strictly lower if they are flipped; and the third
one (III) contains links that let energy unchanged. Two
subcategories of (III) can be defined: (IIIa) contains
links in (III) corresponding to dipole diffusion, and
(IIIb) contains links in (III) corresponding to flippers.
Proportions of links in (I), (II), (IIIa) and (IIIb)
at time t after a deep quench are respectively written
wI(t), wII(t), wIIIa(t) and wIIIb(t). They are plotted
for different sizes in Figure 9, obtained by averaging about
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Fig. 10. Fraction of dipoles versus time for N = 2500, aver-
aged on 576 independent runs.

8 independent runs for each size. It is not surprising to
see that wI(t) grows rapidly and, conversely, that wII(t)
decreases rapidly: this is simply the evolution toward the
ground state – where all links are in (I) – as expected
for a system at zero temperature. However, after this first
rapid evolution – corresponding to rapid decay of energy –
there is a slowing down period where wII(t) is very small,
meaning that the system can hardly lower its energy. The
reason is that the system is almost unable to found local
configurations that could lead to d), e) or f) moves. On
the other hand, wIIIa(t) is strictly greater than zero, so
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Fig. 11. Detail of wII and wa
III for one run and N = 4900.

that diffusions of dipoles still occur. Through these diffu-
sions, dipoles can eventually get close to other defects and
give local configurations of type (II). However, creation of
such configurations by this mechanism is rather unlikely
because dipoles are rare in this phase (see Fig. 10). As a
consequence, the dynamics is very slow. This mechanism
is confirmed by carefully looking at wII(t) and wIIIa(t)
simultaneously (see Fig. 11). Small peaks of wII(t) occur
immediately after small peaks of wIIIa(t), meaning that
diffusion of pairs is the only way to create local configu-
rations leading to energy decrease. So, the role of (IIIa)
is crucial in the slowing down period.
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Fig. 12. A frozen surface with N = 900. 5-vertices are represented by • and 7-vertices by ◦. All others vertices are 6-vertices.
Arrows indicate zooms of regions in the boxes.

However, after some time, wII and wIIIa become equal
to zero: this coincides with energy freezing and removal of
dipoles. But the dynamics is not really stopped, because
during the slowing down period described above, wIIIb

reaches a plateau with small but finite value – independent
of the size – so that flippers still occur even after removal
of dipoles and energy freezing.

At this point, the problem is to know whether flippers
eventually allow diffusion of defects, through some collec-
tive moves, that could lead, after a long time, to creation
of dipoles. In this case, energy could decrease again, and
freezing of energy would be an illusion due to short time
measurements.

4.3 Geometric description

In order to elucidate the role of flippers, it is necessary
to have spatial informations on surfaces when removal of
dipoles and energy freezing – at least apparently – occur.
So, it is very instructive to draw the surfaces. As can be
seen in Figure 12, not only do the defects of different kind
– i.e. 5- and 7-vertices – separate, but, conversely, defects
of the same kind group together into clusters. More pre-
cisely, frozen surfaces look like a sea of 6-vertices with
isolated clusters of defects containing either 5-vertices or
7-vertices. Figures 13 and 14 show the size distributions of
these clusters, measured on 16 independent frozen surfaces
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Fig. 13. Size distribution of 5-clusters on frozen surfaces.

obtained after 1000 sweeps of thermalization followed by
sufficient sweeps (up to 4 × 105) at zero temperature.

It should be noticed that the sizes do not exceed few
vertices. Moreover, the distribution itself does not depend
on the size of the surfaces, meaning that the mechanism
of freezing is local and not influenced by long range cor-
relations.
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Fig. 14. Size distribution of 7-clusters on frozen surfaces.

4.4 Flippers but no dipole creation

The issue is now to understand the role of flippers on a
surface made of 5- and 7-clusters inside a sea of 6-vertices.
There are two possibilities:

– 5-vertices and 7-vertices diffuse across the whole sur-
face and, eventually, some of them are close enough
to form dipoles and allow decreasing of energy. In this
case, evolution could be very slow, but the system is
not really frozen;

– 5-vertices and 7-vertices are moving but clusters are
confined within spatial boundaries so that no dipoles
are created. In this case, the system is for ever trapped
in a set of metastable states.

Arguments suggesting that flippers cannot lead to
dipole creation are now given. The starting point is a state
with clusters of different kinds (5-clusters and 7-clusters),
inside a sea of 6-vertices (about 85% of the surface).

The 5-clusters have the following property: if there ex-
ists a convex contour Csurrounding a 5-cluster and con-
taining no 7-vertex, then, at zero temperature, C will never
be crossed by a 5-vertex coming from the cluster, i.e. there
will never be 5-vertices outside C. Convex contour means
that the number of links attached to each vertex of C and
going outside of C is larger or equal to the number of links
going inside C – the links of C are not taken into account.
The proof runs as follows:
Let a region R, containing only 5- and 6-vertices, be
bounded by a loop C, made of links connecting 5- and/or
6-vertices. It is supposed that there are only 6-vertices
outside C. Then, moves of type a) are performed in R:
• The boundary C cannot be broken: consider a link l ∈ C.
The only possibility for l to be moved is to belong to type
(IIIb) (flipper). In this case, because of the convexity of
the contour, one of the two neighbouring 5-vertices is in-
evitably outside C. It would contradict the starting hy-
pothesis: so, l cannot be moved.
• Consider now a set of four vertices {α1, β1, α2, β2} in-
volved in a move of type a), where α1, α2 are 5-vertices and
β1, β2 are 6-vertices. As shown above, the link β1-β2 can-
not belong to C. After the T1 move, α1, α2 are 6-vertices
and β1, β2 are 5-vertices. There are two possibilities that

could lead to a diffusion of 5-vertices outside C:
(i) β1 and β2 are outside C or
(ii) β1 or β2 are outside C.
Of course, the starting hypothesis prevents α1 and α2 to
be outside C. So, for the case (i), C must contain α1 and
α2, but neither β1 nor β2. It is easy to see that such a
configuration implies a non convex boundary C. For the
case (ii), C must contain α1, α2 and β1 (resp. β2) but not
β2 (resp. β1). It also implies a non convex boundary at β1

(resp. β2).
To conclude, diffusion of 5-vertices outside C is not

allowed.
Consider now the 7-clusters. Unfortunately, last ar-

guments given for 5-clusters do not work. In particular,
a convex boundary can be deformed by a flipper. How-
ever, it is possible to have a rather reliable result. Con-
sider a 7-cluster and perform – by computer simulations
– T1 moves of type b) only in this cluster. Then, the pat-
tern of the cluster evolves through flippers but, as can be
seen by drawing surfaces, it does not extend much and
never reaches any 5-cluster. These simulations take very
few computer time because 7-clusters contain only fews
vertices. So, it is possible to perform very extensive runs
and to have great confidence level in this result.

To summarize, it is very likely that the system gets
trapped and follows a constant energy walk in a set of
states; these states are made of 5- and 7-clusters and are
subject only to flippers that do not destroy the cluster
structure – in particular, flippers cannot create dipoles.

5 Inherent structures and energy landscape

The quenching procedure to zero temperature used in this
work maps equilibrium states to frozen sets of metastable
states. It is in some sense a steepest-descent dynamics to
inherent states as defined by Stillinger and Weber [22].
This approach of glassy behaviours is based on a decom-
position of the configuration space into basins, called in-
herent structures. Each basin contains the states mapped
through steepest-descent to the same local minimum in
the energy landscape. This method provides a deeper un-
derstanding of glassy behaviours in terms of fast intra-
basins and slow inter-basins dynamics, with the definition
of a configurational entropy counting the number of in-
herent structures with a given energy or, alternatively, a
given free energy [23]. However, this symbolic dynamics
between inherent structures is not necessarily relevant for
of all glassy systems [24,25].

For the model studied in this paper, it would be very
interesting to use the Stillinger and Weber approach. But,
as the model is discrete, the zero temperature dynamics is
not a deterministic mapping to metastable states. More-
over, these inherent structures are degenerate, as shown
in the previous section. So, it would require slight mod-
ifications to define unambiguously concepts like inherent
structures, configurational entropy... The present work is
a first step in this approach as it provides a character-
ization of the metastable states reached after a quench
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Fig. 15. Frozen energy per site Ef/N versus temperature, for
N = 400.

from infinite temperature equilibrium states. To go fur-
ther, the frozen energy per site following a quench from
finite temperature to zero temperature has been calcu-
lated for rather small surfaces (N = 400), as preliminary
result. Figure 15 shows the variation of Ef (T )/N with
temperature. As can be seen, this quantity is more or less
independent of T for T ≥ To with To � 2, and strongly
decreases for T < To, meaning that the system explores
deeper valleys in the energy landscape.

6 Conclusion

The model of random surfaces with elastic curvature en-
ergy studied in this paper shows rather trivial static prop-
erties. In particular, there is no phase transition driven
by curvature coupling constant – curvature energy simply
smoothes surfaces and the whole fractal structure of baby
universes disappears at low temperature equilibrium.

However, the system reveals complex dynamical be-
haviour, though there is no frustration nor quenched dis-
order. In particular, when the system is quenched from
totally disordered infinite temperature state to low tem-
perature, glassy behaviour takes place and relaxation time
becomes exponentially long as temperature is lowered.

Glassy behaviour is dramatically strengthened for deep
quench at zero temperature. In this case, simulations and
some arguments strongly suggest that the system really
freezes: after a rapid decay, the energy stops and the
ground state is never reached. Equivalently, freezing cor-
responds to defects (5- and 7-vertices) that cannot be re-
moved by the system. This property does not depend on
the size of the system and should be still valid at the ther-
modynamical limit. In fact, even if energy stops, there is a
remaining dynamics of the system, consisting in flippers,
i.e. T1 moves that locally rotates defects of same kind. But
flippers cannot make energy evolve because of the spa-
tial repartion of defects: they group together into clusters
made of one kind of defects. Then, flippers cannot lead
to diffusion of defects outside some bounded regions, and
dipoles, that could lower energy, are not created. The sys-
tem is forever trapped in a set of metastable states. Simi-
lar results are obtained for reaction-diffusion models [18].

However, there is still an open question: why do defects
of same kind group together into clusters? In particular,
it would be very interesting to study the evolution of the
fractal structure of baby universes during the deep quench.
At infinite temperature, it is known that dH = 4. In frozen
states, there are no more baby universes. But preliminary
results suggest that the fractal dimension of frozen sur-
faces is significantly greater than 2 – the value for flat
surfaces. So, a guess can be made: frozen surfaces keep
memory of their initial baby universes structure through
structure of clusters. The mechanism of clusters creation
would be the following: each initial baby universe is more
or less isolated from the rest of the surface; then, just after
a quench to zero temperature, each baby universe tries to
reach its own local ground state. But in each baby uni-
verse, the difference between the number of 5-vertices and
the number of 7-vertices is topologically constrained by
the boundary of the baby universe. So, after a rapid multi-
relaxation period where boundaries of baby universes are
not expected to be much modified, some regions would
be left with an excess of 5-vertices and some others with
an excess of 7-vertices. This mechanism could lead to cre-
ation of clusters. To summarize, clusters structure would
be a trace of initial baby universes structure.

It would be very interesting to use the inherent struc-
tures approach of Stillinger and Weber for the system
studied here, and to see wether this method can provide
a better understanding of the glassy behaviour observed
at finite temperature. The present work is in some sense
a first step in this direction.
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